
Compatibility Test Suite (CTS) Framework User
Manual

Android 1.6 CTS r4
Open Handset Alliance

Google Confidential

Contents

1. Why be compatible?.. 3
2. How can I become compatible? ... 4

2.1. Comply with Android Compatibility Definition document.................4
2.2. Pass the Compatibility Test Suite (CTS)... 4
2.3. Submit report .. 4

3. How does the CTS work?.. 5
3.1. Workflow ... 5
3.2. Types of test cases ... 6
3.3. Areas Covered .. 6

4. Setting up and using the CTS... 8
4.1. Configuring the CTS ... 8
4.2. Setting up your device .. 8
4.3. Using the CTS... 9
4.4. Selecting CTS Plans ... 9

5. Interpreting the Test Results .. 11
6. Release Notes .. 13

6.1. General ... 13
6.2. Known Framework issues... 13
6.3. Known Test issues.. 0

7. Appendix: CTS Console Command Reference............................... 14

Google Confidential

1. Why be compatible?

1. Give your users the best possible experience with the applications they run.
When a device is compatible with Android, users can choose from among many
high-quality applications. Applications that take full advantage of Android's
features are likely to perform best on compatible devices.

2. Make it easy for developers to write top-quality applications for your device.
Developers want to streamline their applications for Android, and this is easiest
for them when they are writing for a predictable platform.

3. Take advantage of the Android Market.
Compatible handsets can give users access to the Android Market.

Android compatibility is free, and it's easy.

Google Confidential

2. How can I become compatible?

2.1. Comply with Android Compatibility Definition document

To start, read the Android compatibility definition for the Android platform version that
you want. This document enumerates the software and the hardware features in a
compatible Android device. Except where noted, the features are all required for
Android compliance. To learn more about Android compatibility definition in general,
and to locate and download a particular definitions document, see the current
Compatibility Definition. Archived versions of older Compatibility Definitions may be
found on the Downloads page.

2.2. Pass the Compatibility Test Suite (CTS)

The Compatibility Test Suite (CTS) is a downloadable open-source testing harness that
you can use in any way you like as you develop your handset; for example, you could
use the CTS to do continuous self-testing during your development work. For more
about the CTS and the compatibility report that it generates, see the Compatibility Test
Suite page. For instructions on using the CTS, see the CTS User Guide.

2.3. Submit report

When you are ready to claim compatibility for your device, you can submit the CTS-
generated report to cts@android.com. When you submit a CTS report, you can also
request access to the Android Market.

* This is an early preview of CTS. The compatibility site and the service to certify your
compatibility reports are work in progress - we will update you when these are ready.

Google Confidential

3. How does the CTS work?

The CTS is an automated testing harness that includes two major software
components:

• The CTS test harness runs on your desktop machine and manages test
execution.

• Individual test cases are executed on attached mobile devices or on an
emulator. The test cases are written in Java as JUnit tests and packaged as
Android .apk files to run on the actual device target.

3.1. Workflow

1. Use the bundled CTS release or download the CTS from the Android Open
Source Project onto your desktop machine.

2. Install and configure the CTS.
3. Attach at least one device (or emulator) to your machine.
4. Launch the CTS. The CTS test harness loads the test plan onto the attached

devices. For each test in the test harness:
◦ The test harness pushes a .apk file to each device, executes the test

through instrumentation, and records test results.
◦ The test harness removes the .apk file from each device.

5. Once all the tests are executed, you can view the test results in your browser
and use the results to adjust your design. You can continue to run the CTS
throughout your development process.

Google Confidential

When you are ready, you can submit the report generated by the CTS to
cts@android.com. The report is a .zip archived file that contains XML results and
supplemental information such as screen captures.

3.2. Types of test cases

The CTS includes the following types of test cases:
• Unit tests test atomic units of code within the Android platform; e.g. a single

class, such as java.util.HashMap.
• Functional tests test a combination of APIs together in a higher-level use-case.
• Reference application tests instrument a complete sample application to

exercise a full set of APIs and Android runtime services

Future versions of the CTS will include the following types of test cases:
• Robustness tests test the durability of the system under stress.
• Performance tests test the performance of the system against defined

benchmarks, for example rendering frames per second.

3.3. Areas Covered

The unit test cases cover the following areas to ensure compatibility

Area Description

Signature tests

For each Android release, there are XML files describing the
signatures of all public APIs contained in the release. The CTS
contains a utility to check those API signatures against the APIs
available on the device. The results from signature checking are
recorded in the test result XML file.

Platform API Tests

Test the platform (core libraries and Android Application
Framework) APIs as documented in the SDK Class Index to ensure
API correctness:

• correct class, attribute and method signatures
• correct method behavior
• negative tests to ensure expected behavior for incorrect

parameter handling

Dalvik VM Tests The tests focus on testing the Dalvik VM

Google Confidential

http://code.google.com/android/reference/classes.html

Platform Data Model

The CTS tests the core platform data model as exposed to
application developers through content providers, as documented in
the SDK android.provider package:

• contacts
• browser
• settings
• more...

Platform Intents
The CTS tests the core platform intents, as documented in the SDK
Available Intents.

Platform Permissions
The CTS tests the core platform permissions, as documented in the
SDK Available Permissions.

Platform Resources

The CTS tests for correct handling of the core platform resource
types, as documented in the SDK Available Resource Types. This
includes tests for:

• simple values
• drawables
• nine-patch
• animations
• layouts
• styles and themes
• loading alternate resources

Google Confidential

http://code.google.com/android/reference/android/provider/package-summary.html
http://code.google.com/android/reference/available-intents.html
http://code.google.com/android/reference/android/Manifest.permission.html
http://code.google.com/android/reference/available-resources.html

4. Setting up and using the CTS

4.1. Configuring the CTS

To run CTS, make sure you have atleast the Android 1.6 r1 SDK installed on your
machine. **There are changes to adb in 1.6 that will cause CTS to not work
correctly with older versions of adb.**

To configure CTS, extract the contents of the zip file and edit the android-cts/
tools/startcts script - modify the variable SDK_ROOT to match your environment.

Example:
SDK_ROOT=/home/myuser/android-sdk-linux_x86-1.6_r1

This should point to the top-level directory where you unzipped the Android 1.6 SDK to.

4.2. Setting up your device

CTS can be executed only on consumer device since Android 1.6 -- you can run CTS
only on developer builds for Android 1.0 and 1.5.

This section is important as not following these instructions will lead to test timeouts/
failures:

1. Please download and install the Android 1.6 SDK on your machine.
2. Your phone should be running a user build (Android 1.6 and later) from

source.android.com
3. Please refer to this link on the Android developer site and set up your device

accordingly.
4. Make sure that your device has been flashed with a user build (Android 1.6 and

later) before you run CTS.
5. You need to download the TTS files via Settings > Speech synthesis > Install

voice data before running CTS tests. (Note that this assumes you have Android
Market installed on the device, if not you will need to install the files manually via
adb)

6. It is advisable to log in to the device with a test Google account, not an account
that you actually use.

7. Make sure the device has a SD card plugged in and the card is empty. Warning:
CTS may modify/erase data on the SD card plugged in to the device.

8. Do a factory data reset on the device (Settings > SD Card & phone storage >
Factory data reset). Warning: This will erase all user data from the phone.

9. Make sure no lock pattern is set on the device (Settings > Security & location >
Require Pattern should be unchecked.

Google Confidential

http://developer.android.com/sdk/1.6_r1/index.html
http://developer.android.com/sdk/1.6_r1/index.html
http://source.android.com
http://developer.android.com/guide/developing/device.html

10. Make sure the "Screen Timeout" is set to "Never Timeout" (Settings > Sound &
Display > Screen Timeout should be set to "Never Timeout".

11. Make sure the "Stay Awake" development option is checked (Settings >
Applications > Development > Stay awake).

12. Make sure Settings > Application > Development > Allow mock locations is set
to true.

13. Make sure the device is at the home screen at the start of CTS (Press the home
button).

14. While a device is running tests, it must not be used for any other tasks.
15. Do not press any keys on the device while CTS is running. Pressing keys or

touching the screen of a test device will interfere with the running tests and may
lead to test failures.

4.3. Using the CTS

To run a test plan:
1. Make sure you have at least one device connected (or the emulator running).

Launch the CTS console by running the startcts script which you modified to
match your environment, e.g.
$ bash android-cts/tools/startcts

2. You may start the default test plan (containing all of the test packages) by typing
start --plan CTS. This will kick off all the CTS tests required for
compatibility.
Type ls -p to see a list of test packages in the repository.
Type ls --plan to see a list of test plans in the repository.
See the CTS command reference or type help for a complete list of supported
commands.

3. Alternately, you can just run a CTS plan from the command line using
startcts start --plan <plan_name>

4. You should test progress and results reported on the console.

4.4. Selecting CTS Plans

For this release the following 7 test plans are available.
1. CTS - contains all tests and will run ~21,000 tests on your device. These tests

are required for compatibility. At this point performance tests are not part of this
plan (this will change for future CTS releases).

2. Signature - contains the signature verification of all public APIs
3. Android - contains tests for the android APIs
4. Java - contains tests for the Java core library
5. VM - contains tests for the Dalvik virtual machine

Google Confidential

6. RefApp - contains reference application tests (more coming in future CTS
release)

7. Performance - contains performance tests for your implementation (more
coming in future CTS releases)

These can be executed with the start command as mentioned earlier.

Google Confidential

5. Interpreting the Test Results
The test results are placed in the file:
$CTS_ROOT/repository/results/<start time>.zip
Inside the zip, the testResult.xml file contains the actual results -- open this file in
any web browser (Firefox 3.x recommended) to view the test results.

The 'device information' section provides details about the device and the firmware
(make, model, firmware build, platform) and the hardware on the device (screen
resolution, keypad, screen type).
The details of the executed test plan are present in the 'test summary' section which
provides the CTS plan name and execution start and end times. It also presents an
aggregate summary of the number of tests that passed, failed, time out or could not be
executed.
The next section also provides a summary of tests passed per package.

Google Confidential

This is followed by details of the the actual tests that were executed. The report lists the
test package, test suite, test case and the executed tests. It shows the result of the test
execution - pass, fail, timed out or not executed. In the event of a test failure details are
provided to help diagnose the cause. Further, the stack trace of the failure is available in
the XML file but is not included in the report to ensure brevity - viewing the XML file with
a text editor should provide details of the test failure (search for the <Test> tag
corresponding to the failed test and look within it for the <StackTrace> tag).

Google Confidential

6. Release Notes

6.1. General

• This CTS release contains approximately 21,000 tests that you can execute on
the device.

• Please make sure all steps in section 4.2 "Setting up your device" have been
followed before you kick off CTS. Not following these instructions may cause
tests to timeout or fail.

6.2. Known Issues

• The framework restarts the device periodically -- this is expected behavior.
• Concurrent devices are not supported in this release -- CTS can be executed on

only one device at a given time.
• The CTS console allows the user to derive a new test plan based on previous

results. This is useful for re-running tests that did not pass in a previous run.
Successive derivation of test plans (i.e. deriving a test plan from test results of
an already derived test plan) may result in the plan including extra tests -- this is
a known issue for this release.

• Occasionally while running the tests, a system dialog may pop up informing the
user that process 'android.process.acore' is not responding. The user is given
the option to kill the process or wait for it to respond. This alert dialog interferes
with some tests by grabbing all key and pointer events, causing the tests to fail.
Re-running the tests usually fixes the problem.

Google Confidential

7. Appendix: CTS Console Command Reference

Host

help Display the list of available commands.

exit Exit the CTS console.

Test Plan

ls --plan [<test_plan_name>]
Displays the contents of the specified test
plan. If no plan is specified, a list of all
plans is displayed.

add --plan <new_plan_name>

Create a new test plan. The console will
guide you through the test packages to
select the tests you want to include in your
plan. Note that the plan name must be
unique.

add --derivedplan <new_plan_name>
[-s <session_id>]
[-r [pass | fail | timeout | notExecuted]]

Create a new test plan from an existing
result. This test plan will consist of all test
with the specified result type in the
specified session. If no result type is
given, all but the passed tests are
included. If no session is given, the latest
results are used.

rm --plan <test_plan_name | all> Remove the specified plan from the plan
repository. all removes all test plans

start
--plan <test_plan_name>

Start the specified test plan and displays
progress information. The console will
only prompt for further commands when
the plan has run to completion.

If there are available test sessions for the
specified test plan, the CTS console will
prompt user to choose between two
options:
(1) Choose a session from the existing
sessions;

Google Confidential

-d, --device <device_id>

-t, --test <test_name>

-p, --package <java_package_name>

(2) Create a new session.

If more than one device connected, CTS
host will prompt user to choose one
device.

Start the specified test plan using the
specified device.

Start to run the specified test contained in
the specified test plan

Start to run the specified Java package
contained in the specified plan.

Test Package

ls
-p, --package [<package name>]

List all available test packages in the
repository. If package name is specified
then lists all its test suites/test cases.

add -p, --package <zip_file_path> Add new packages to the case repository.

rm -p, --package [<package_name> | all] Remove the specified package from the
case repository. all removes all packages

Test Result

ls
-r, --result
[pass | fail | timeout | notExecuted]
[-s <session_id>]

List the results for all available sessions. If
session_id is specified, then lists results
for that specific session.
If pass, fail, etc. is specified then filters
test results based on the specified results.

History

history | h [<count>] [-e <num>]

List all commands in history.
If count is specified, last count commands
in history are shown
-e allows the command with number num
to be executed directly from history

Device

ls -d, --device List all attached devices.

Google Confidential

Google Confidential

	1. Why be compatible?
	2. How can I become compatible?
	2.1. Comply with Android Compatibility Definition document
	2.2. Pass the Compatibility Test Suite (CTS)
	2.3. Submit report

	3. How does the CTS work?
	3.1. Workflow
	3.2. Types of test cases
	3.3. Areas Covered

	4. Setting up and using the CTS
	4.1. Configuring the CTS
	4.2. Setting up your device
	4.3. Using the CTS
	4.4. Selecting CTS Plans

	5. Interpreting the Test Results
	6. Release Notes
	6.1. General
	6.2. Known Issues

	7. Appendix: CTS Console Command Reference

