sensors.h
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ANDROID_SENSORS_INTERFACE_H
18 #define ANDROID_SENSORS_INTERFACE_H
19 
20 #include <stdint.h>
21 #include <sys/cdefs.h>
22 #include <sys/types.h>
23 
24 #include <hardware/hardware.h>
25 #include <cutils/native_handle.h>
26 
27 __BEGIN_DECLS
28 
29 /**
30  * The id of this module
31  */
32 #define SENSORS_HARDWARE_MODULE_ID "sensors"
33 
34 /**
35  * Name of the sensors device to open
36  */
37 #define SENSORS_HARDWARE_POLL "poll"
38 
39 /**
40  * Handles must be higher than SENSORS_HANDLE_BASE and must be unique.
41  * A Handle identifies a given sensors. The handle is used to activate
42  * and/or deactivate sensors.
43  * In this version of the API there can only be 256 handles.
44  */
45 #define SENSORS_HANDLE_BASE 0
46 #define SENSORS_HANDLE_BITS 8
47 #define SENSORS_HANDLE_COUNT (1<<SENSORS_HANDLE_BITS)
48 
49 
50 /**
51  * Sensor types
52  */
53 #define SENSOR_TYPE_ACCELEROMETER 1
54 #define SENSOR_TYPE_MAGNETIC_FIELD 2
55 #define SENSOR_TYPE_ORIENTATION 3
56 #define SENSOR_TYPE_GYROSCOPE 4
57 #define SENSOR_TYPE_LIGHT 5
58 #define SENSOR_TYPE_PRESSURE 6
59 #define SENSOR_TYPE_TEMPERATURE 7 // deprecated
60 #define SENSOR_TYPE_PROXIMITY 8
61 #define SENSOR_TYPE_GRAVITY 9
62 #define SENSOR_TYPE_LINEAR_ACCELERATION 10
63 #define SENSOR_TYPE_ROTATION_VECTOR 11
64 #define SENSOR_TYPE_RELATIVE_HUMIDITY 12
65 #define SENSOR_TYPE_AMBIENT_TEMPERATURE 13
66 
67 /**
68  * Values returned by the accelerometer in various locations in the universe.
69  * all values are in SI units (m/s^2)
70  */
71 
72 #define GRAVITY_SUN (275.0f)
73 #define GRAVITY_EARTH (9.80665f)
74 
75 /** Maximum magnetic field on Earth's surface */
76 #define MAGNETIC_FIELD_EARTH_MAX (60.0f)
77 
78 /** Minimum magnetic field on Earth's surface */
79 #define MAGNETIC_FIELD_EARTH_MIN (30.0f)
80 
81 
82 /**
83  * status of each sensor
84  */
85 
86 #define SENSOR_STATUS_UNRELIABLE 0
87 #define SENSOR_STATUS_ACCURACY_LOW 1
88 #define SENSOR_STATUS_ACCURACY_MEDIUM 2
89 #define SENSOR_STATUS_ACCURACY_HIGH 3
90 
91 /**
92  * Definition of the axis
93  * ----------------------
94  *
95  * This API is relative to the screen of the device in its default orientation,
96  * that is, if the device can be used in portrait or landscape, this API
97  * is only relative to the NATURAL orientation of the screen. In other words,
98  * the axis are not swapped when the device's screen orientation changes.
99  * Higher level services /may/ perform this transformation.
100  *
101  * x<0 x>0
102  * ^
103  * |
104  * +-----------+--> y>0
105  * | |
106  * | |
107  * | |
108  * | | / z<0
109  * | | /
110  * | | /
111  * O-----------+/
112  * |[] [ ] []/
113  * +----------/+ y<0
114  * /
115  * /
116  * |/ z>0 (toward the sky)
117  *
118  * O: Origin (x=0,y=0,z=0)
119  *
120  *
121  * SENSOR_TYPE_ORIENTATION
122  * -----------------------
123  *
124  * All values are angles in degrees.
125  *
126  * Orientation sensors return sensor events for all 3 axes at a constant
127  * rate defined by setDelay().
128  *
129  * azimuth: angle between the magnetic north direction and the Y axis, around
130  * the Z axis (0<=azimuth<360).
131  * 0=North, 90=East, 180=South, 270=West
132  *
133  * pitch: Rotation around X axis (-180<=pitch<=180), with positive values when
134  * the z-axis moves toward the y-axis.
135  *
136  * roll: Rotation around Y axis (-90<=roll<=90), with positive values when
137  * the x-axis moves towards the z-axis.
138  *
139  * Note: For historical reasons the roll angle is positive in the clockwise
140  * direction (mathematically speaking, it should be positive in the
141  * counter-clockwise direction):
142  *
143  * Z
144  * ^
145  * (+roll) .--> |
146  * / |
147  * | | roll: rotation around Y axis
148  * X <-------(.)
149  * Y
150  * note that +Y == -roll
151  *
152  *
153  *
154  * Note: This definition is different from yaw, pitch and roll used in aviation
155  * where the X axis is along the long side of the plane (tail to nose).
156  *
157  *
158  * SENSOR_TYPE_ACCELEROMETER
159  * -------------------------
160  *
161  * All values are in SI units (m/s^2) and measure the acceleration of the
162  * device minus the force of gravity.
163  *
164  * Acceleration sensors return sensor events for all 3 axes at a constant
165  * rate defined by setDelay().
166  *
167  * x: Acceleration minus Gx on the x-axis
168  * y: Acceleration minus Gy on the y-axis
169  * z: Acceleration minus Gz on the z-axis
170  *
171  * Examples:
172  * When the device lies flat on a table and is pushed on its left side
173  * toward the right, the x acceleration value is positive.
174  *
175  * When the device lies flat on a table, the acceleration value is +9.81,
176  * which correspond to the acceleration of the device (0 m/s^2) minus the
177  * force of gravity (-9.81 m/s^2).
178  *
179  * When the device lies flat on a table and is pushed toward the sky, the
180  * acceleration value is greater than +9.81, which correspond to the
181  * acceleration of the device (+A m/s^2) minus the force of
182  * gravity (-9.81 m/s^2).
183  *
184  *
185  * SENSOR_TYPE_MAGNETIC_FIELD
186  * --------------------------
187  *
188  * All values are in micro-Tesla (uT) and measure the ambient magnetic
189  * field in the X, Y and Z axis.
190  *
191  * Magnetic Field sensors return sensor events for all 3 axes at a constant
192  * rate defined by setDelay().
193  *
194  * SENSOR_TYPE_GYROSCOPE
195  * ---------------------
196  *
197  * All values are in radians/second and measure the rate of rotation
198  * around the X, Y and Z axis. The coordinate system is the same as is
199  * used for the acceleration sensor. Rotation is positive in the
200  * counter-clockwise direction (right-hand rule). That is, an observer
201  * looking from some positive location on the x, y or z axis at a device
202  * positioned on the origin would report positive rotation if the device
203  * appeared to be rotating counter clockwise. Note that this is the
204  * standard mathematical definition of positive rotation and does not agree
205  * with the definition of roll given earlier.
206  * The range should at least be 17.45 rad/s (ie: ~1000 deg/s).
207  *
208  * SENSOR_TYPE_PROXIMITY
209  * ----------------------
210  *
211  * The distance value is measured in centimeters. Note that some proximity
212  * sensors only support a binary "close" or "far" measurement. In this case,
213  * the sensor should report its maxRange value in the "far" state and a value
214  * less than maxRange in the "near" state.
215  *
216  * Proximity sensors report a value only when it changes and each time the
217  * sensor is enabled.
218  *
219  * SENSOR_TYPE_LIGHT
220  * -----------------
221  *
222  * The light sensor value is returned in SI lux units.
223  *
224  * Light sensors report a value only when it changes and each time the
225  * sensor is enabled.
226  *
227  * SENSOR_TYPE_PRESSURE
228  * --------------------
229  *
230  * The pressure sensor return the athmospheric pressure in hectopascal (hPa)
231  *
232  * Pressure sensors report events at a constant rate defined by setDelay().
233  *
234  * SENSOR_TYPE_GRAVITY
235  * -------------------
236  *
237  * A gravity output indicates the direction of and magnitude of gravity in
238  * the devices's coordinates. On Earth, the magnitude is 9.8 m/s^2.
239  * Units are m/s^2. The coordinate system is the same as is used for the
240  * acceleration sensor. When the device is at rest, the output of the
241  * gravity sensor should be identical to that of the accelerometer.
242  *
243  * SENSOR_TYPE_LINEAR_ACCELERATION
244  * --------------------------------
245  *
246  * Indicates the linear acceleration of the device in device coordinates,
247  * not including gravity.
248  * This output is essentially Acceleration - Gravity. Units are m/s^2.
249  * The coordinate system is the same as is used for the acceleration sensor.
250  *
251  *
252  * SENSOR_TYPE_ROTATION_VECTOR
253  * ---------------------------
254  *
255  * A rotation vector represents the orientation of the device as a combination
256  * of an angle and an axis, in which the device has rotated through an angle
257  * theta around an axis <x, y, z>. The three elements of the rotation vector
258  * are <x*sin(theta/2), y*sin(theta/2), z*sin(theta/2)>, such that the magnitude
259  * of the rotation vector is equal to sin(theta/2), and the direction of the
260  * rotation vector is equal to the direction of the axis of rotation. The three
261  * elements of the rotation vector are equal to the last three components of a
262  * unit quaternion <cos(theta/2), x*sin(theta/2), y*sin(theta/2), z*sin(theta/2)>.
263  * Elements of the rotation vector are unitless. The x, y, and z axis are defined
264  * in the same was as for the acceleration sensor.
265  *
266  * The reference coordinate system is defined as a direct orthonormal basis,
267  * where:
268  *
269  * - X is defined as the vector product Y.Z (It is tangential to
270  * the ground at the device's current location and roughly points East).
271  *
272  * - Y is tangential to the ground at the device's current location and
273  * points towards the magnetic North Pole.
274  *
275  * - Z points towards the sky and is perpendicular to the ground.
276  *
277  *
278  * The rotation-vector is stored as:
279  *
280  * sensors_event_t.data[0] = x*sin(theta/2)
281  * sensors_event_t.data[1] = y*sin(theta/2)
282  * sensors_event_t.data[2] = z*sin(theta/2)
283  * sensors_event_t.data[3] = cos(theta/2)
284  *
285  *
286  * SENSOR_TYPE_RELATIVE_HUMIDITY
287  * ------------------------------
288  *
289  * A relative humidity sensor measures relative ambient air humidity and
290  * returns a value in percent.
291  *
292  * Relative humidity sensors report a value only when it changes and each
293  * time the sensor is enabled.
294  *
295  *
296  * SENSOR_TYPE_AMBIENT_TEMPERATURE
297  * -------------------------------
298  *
299  * The ambient (room) temperature in degree Celsius.
300  *
301  * Temperature sensors report a value only when it changes and each time the
302  * sensor is enabled.
303  *
304  */
305 
306 typedef struct {
307  union {
308  float v[3];
309  struct {
310  float x;
311  float y;
312  float z;
313  };
314  struct {
315  float azimuth;
316  float pitch;
317  float roll;
318  };
319  };
320  int8_t status;
321  uint8_t reserved[3];
322 } sensors_vec_t;
323 
324 /**
325  * Union of the various types of sensor data
326  * that can be returned.
327  */
328 typedef struct sensors_event_t {
329  /* must be sizeof(struct sensors_event_t) */
330  int32_t version;
331 
332  /* sensor identifier */
333  int32_t sensor;
334 
335  /* sensor type */
336  int32_t type;
337 
338  /* reserved */
339  int32_t reserved0;
340 
341  /* time is in nanosecond */
342  int64_t timestamp;
343 
344  union {
345  float data[16];
346 
347  /* acceleration values are in meter per second per second (m/s^2) */
349 
350  /* magnetic vector values are in micro-Tesla (uT) */
352 
353  /* orientation values are in degrees */
355 
356  /* gyroscope values are in rad/s */
358 
359  /* temperature is in degrees centigrade (Celsius) */
360  float temperature;
361 
362  /* distance in centimeters */
363  float distance;
364 
365  /* light in SI lux units */
366  float light;
367 
368  /* pressure in hectopascal (hPa) */
369  float pressure;
370 
371  /* relative humidity in percent */
373  };
374  uint32_t reserved1[4];
376 
377 
378 
379 struct sensor_t;
380 
381 /**
382  * Every hardware module must have a data structure named HAL_MODULE_INFO_SYM
383  * and the fields of this data structure must begin with hw_module_t
384  * followed by module specific information.
385  */
387  struct hw_module_t common;
388 
389  /**
390  * Enumerate all available sensors. The list is returned in "list".
391  * @return number of sensors in the list
392  */
393  int (*get_sensors_list)(struct sensors_module_t* module,
394  struct sensor_t const** list);
395 };
396 
397 struct sensor_t {
398  /* name of this sensors */
399  const char* name;
400  /* vendor of the hardware part */
401  const char* vendor;
402  /* version of the hardware part + driver. The value of this field
403  * must increase when the driver is updated in a way that changes the
404  * output of this sensor. This is important for fused sensors when the
405  * fusion algorithm is updated.
406  */
407  int version;
408  /* handle that identifies this sensors. This handle is used to activate
409  * and deactivate this sensor. The value of the handle must be 8 bits
410  * in this version of the API.
411  */
412  int handle;
413  /* this sensor's type. */
414  int type;
415  /* maximaum range of this sensor's value in SI units */
416  float maxRange;
417  /* smallest difference between two values reported by this sensor */
418  float resolution;
419  /* rough estimate of this sensor's power consumption in mA */
420  float power;
421  /* minimum delay allowed between events in microseconds. A value of zero
422  * means that this sensor doesn't report events at a constant rate, but
423  * rather only when a new data is available */
424  int32_t minDelay;
425  /* reserved fields, must be zero */
426  void* reserved[8];
427 };
428 
429 
430 /**
431  * Every device data structure must begin with hw_device_t
432  * followed by module specific public methods and attributes.
433  */
435  struct hw_device_t common;
436 
437  /** Activate/deactivate one sensor.
438  *
439  * @param handle is the handle of the sensor to change.
440  * @param enabled set to 1 to enable, or 0 to disable the sensor.
441  *
442  * @return 0 on success, negative errno code otherwise
443  */
444  int (*activate)(struct sensors_poll_device_t *dev,
445  int handle, int enabled);
446 
447  /**
448  * Set the delay between sensor events in nanoseconds for a given sensor.
449  *
450  * If the requested value is less than sensor_t::minDelay, then it's
451  * silently clamped to sensor_t::minDelay unless sensor_t::minDelay is
452  * 0, in which case it is clamped to >= 1ms.
453  *
454  * @return 0 if successful, < 0 on error
455  */
456  int (*setDelay)(struct sensors_poll_device_t *dev,
457  int handle, int64_t ns);
458 
459  /**
460  * Returns an array of sensor data.
461  * This function must block until events are available.
462  *
463  * @return the number of events read on success, or -errno in case of an error.
464  * This function should never return 0 (no event).
465  *
466  */
467  int (*poll)(struct sensors_poll_device_t *dev,
468  sensors_event_t* data, int count);
469 };
470 
471 /** convenience API for opening and closing a device */
472 
473 static inline int sensors_open(const struct hw_module_t* module,
474  struct sensors_poll_device_t** device) {
475  return module->methods->open(module,
476  SENSORS_HARDWARE_POLL, (struct hw_device_t**)device);
477 }
478 
479 static inline int sensors_close(struct sensors_poll_device_t* device) {
480  return device->common.close(&device->common);
481 }
482 
483 __END_DECLS
484 
485 #endif // ANDROID_SENSORS_INTERFACE_H
sensors_vec_t orientation
Definition: sensors.h:354
Definition of the axis
Definition: sensors.h:306
int(* get_sensors_list)(struct sensors_module_t *module, struct sensor_t const **list)
Enumerate all available sensors.
Definition: sensors.h:393
int(* activate)(struct sensors_poll_device_t *dev, int handle, int enabled)
Activate/deactivate one sensor.
Definition: sensors.h:444
int32_t minDelay
Definition: sensors.h:424
float power
Definition: sensors.h:420
const char * vendor
Definition: sensors.h:401
struct hw_module_t common
Definition: sensors.h:387
float pressure
Definition: sensors.h:369
float data[16]
Definition: sensors.h:345
float distance
Definition: sensors.h:363
sensors_vec_t acceleration
Definition: sensors.h:348
sensors_vec_t magnetic
Definition: sensors.h:351
Every hardware module must have a data structure named HAL_MODULE_INFO_SYM and the fields of this dat...
Definition: sensors.h:386
void * reserved[8]
Definition: sensors.h:426
int handle
Definition: sensors.h:412
int8_t status
Definition: sensors.h:320
int type
Definition: sensors.h:414
Every device data structure must begin with hw_device_t followed by module specific public methods an...
Definition: sensors.h:434
int(* poll)(struct sensors_poll_device_t *dev, sensors_event_t *data, int count)
Returns an array of sensor data.
Definition: sensors.h:467
Union of the various types of sensor data that can be returned.
Definition: sensors.h:328
int32_t sensor
Definition: sensors.h:333
int(* setDelay)(struct sensors_poll_device_t *dev, int handle, int64_t ns)
Set the delay between sensor events in nanoseconds for a given sensor.
Definition: sensors.h:456
int64_t timestamp
Definition: sensors.h:342
int32_t reserved0
Definition: sensors.h:339
float roll
Definition: sensors.h:317
float azimuth
Definition: sensors.h:315
float relative_humidity
Definition: sensors.h:372
float temperature
Definition: sensors.h:360
float maxRange
Definition: sensors.h:416
int version
Definition: sensors.h:407
int32_t version
Definition: sensors.h:330
struct hw_device_t common
Definition: sensors.h:435
sensors_vec_t gyro
Definition: sensors.h:357
struct sensors_event_t sensors_event_t
Union of the various types of sensor data that can be returned.
uint32_t reserved1[4]
Definition: sensors.h:374
const char * name
Definition: sensors.h:399
int32_t type
Definition: sensors.h:336
float resolution
Definition: sensors.h:418
float pitch
Definition: sensors.h:316